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SUMMARY 
A symbolic technique is developed to automatically generate consistent multiparameter families of difference 
approximations to the heat equation with Dirichlet boundary conditions in arbitrary regions. A stencil of non- 
uniform step size, conformable along the spatial axes via spatial displacement parameters, is devised to handle the 
problem of irregular boundaries. Using this stencil as a basic building block, multiparameter families of difference 
schemes applicable without modification both in the interior and along the boundaries of arbitrary regions, are 
algorithmically generated. The technique is demonstrated in detail for the one- and two-dimensional heat operator. 
Necessary and sufficient conditions for the stability of these families are given in terms of their parameters. All 
existing six- and ten-point two-level schemes for the one- and two-dimensional cases are shown to form subclasses 
of these families. 

1. Introduction 

M a n y  scientific problems are formulated as partial differential equations. Since very few of 

these can be solved analytically, various techniques have been devised for obtaining 

approximate  solutions [1, 2, 3, 9, 11, 12]. Among  the large number  of numerical methods 

proposed for solving partial differential equations, the method of finite differences has 

particular importance because of its universal applicability to both  linear and nonlinear 

problems. While the repetitive nature of the method makes it particularly well-suited for 

digital computat ions,  time and space complexities are often quite large. The search for 

efficient finite difference methods has, therefore, been intensive over the past decades, 

resulting in the development of many  schemes. However,  until recently there has been no 

unified approach  for generating and testing new difference schemes. Each formula has had 

to be considered individually with respect to properties such as accuracy, consistency, 

stability and convergence. 

Recently, Khalil [7] proposed  an algori thm for generating consistent families of difference 

approximat ions  that  depend on several parameters.  This was illustrated by deriving and 

analyzing a two-parameter ,  eighteen-point, two-level family of high-order approximat ions  

* This work was supported in part by the UNIDEL Foundation at the University of Delaware and in part by 
grants to the Massachusetts Institute of Technology MATHLAB Project from the Advanced Research Projects 
Agency (ARPA) and the Department of Defense under Office of Naval Research Contract N00014-70-A-0362-001. 
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to the two-dimensional equation of heat flow in a polygonal region with Dirichlet boundary 
conditions. Later, Giese and Khalil [8] used inverse Vandermonde matrices to formalize the 
approach and derived a twelve-parameter family of eighteen-point, two-level approxi- 
mations for the same equation. With this unifying approach, families can be analyzed in 
terms of their parameters to determine methods of increased efficiency. 

A natural extension of their work is to generalize the approach to handle equations in 
arbitrary regions. Embedding these generalizations in a multiparameter family of difference 
methods will undoubtedly be profitable, since it enables us to study the effects of boundary 
contours on the choice of parameters. Moreover, the algorithm thus developed will form the 
nucleus of software for solving partial differential equations. 

The desired generalization was explored using the Vandermonde matrix formalization. 
This led to a numeric approach in which each specific case had to be handled individually, 
resulting in an increase of complexity in the generation of families. Although the increase in 
complexity for a specific case is not significant, the number of cases to be considered grows 
rapidly with the number of spatial coordinates. 

It therefore seemed advantageous to vary the approach in such a way as to minimize the 
complexity but still retain the technique of automatically generating consistent multipara- 
meter families. A symbolic approach, based on a net of variable geometry, was selected for 
this purpose. In addition to generation parameters, explicit spatial displacement parameters 
are used to achieve non-uniformity of step size along the spatial axes. This device permits 
algorithmic generation of multiparameter families of difference schemes applicable without 
modification both in the interior and along the boundaries of general regions defined by 
sufficiently smooth boundaries, thus minimizing complexity. In addition, such an approach 
permits apriori stability analysis to yield valuable information regarding the choice of 
generation parameters. Finally, this approach provides a unifying principle for inde- 
pendently developed methods: all the well-known two-level approximations, as well as the 
five and twelve-parameter families of Giese and Khalil, are embedded in the approximations 
derived here. 

In Section 2 we develop and analyze a multiparameter family of non-uniform difference 
methods for the one-dimensional equation of heat flow with Dirichlet boundary conditions. 
Section 3 deals with the extension of the method to higher dimensions with Dirichlet 
boundary conditions. As a specific case, a ten-point, two-level multiparameter family is 
studied in detail. 

2. A non-uniform multiparameter family of  difference analogues to u t --  uxx 

The simplest technique for solving a partial differential equation numerically is the finite 
difference method. Our aim is to automatically generate a non-uniform analogue to the heat 
operator which will serve as a nucleus in the development of computer software for the 
solution of this class of problems. To this end we seek the most general analogue. 
Consequently, our approach is to construct families of methods which depend on several 
parameters: spatial displacement parameters (SDP) and generation parameters (GP). 
Assignment of values to these parameters yields various methods which may be used as 
circumstances dictate. 

To illustrate this idea we shall consider in this section the one-dimensional heat equation 
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u, = uxx (2.1) 

in an arbitrary region R of the (x, t) space with smooth boundary OR, subject to initial 
conditions 

u(x, O) = f ( x )  on the x-axis 

and Dirichlet boundary conditions u(x, t) = g(x, t) on OR for prescribed functions f and 9. 
We assume that a solution exists and that both the solution and the boundaries are 
sufficiently smooth and differentiable. 

To solve this problem using finite differences, we cover the region R x 0R by a lattice of 
discrete points and approximate u(x, t) by the difference operator 

1 L[u(x, t)] = Au(x  - a,h, t - ½k) + Bu(x, t - 5k) 

1 1 ~h, t + -ik) + Cu(x + fl, h, t - 2k) + Du(x - c~,+ 

+ Eu(x, t + ½k) + Fu(x + fl,+lh, t + ½k) (2.2) 

where 

h = A x > O ,  k = A t > O ,  and 0 < a ,  fl_< 1. (2.3) 

Here ct, ft,, a,+a, fl,+l denote the left and right SDP at the lower and upper time levels 
respectively. 

Unlike familiar difference operators, (2.2) generates a non-uniform lattice. 

2.1. The fundamental stencil 
The set of coefficients c£ = {A, B, C, D, E, F} and center point Q = (x, t) define the stencil 
S(Q) associated with the difference operator (2.2). We say that this stencil is conformable, in 
that nodes A, C, D, F ~ cg can be positioned to lie directly on OR. The vehicle permitting this 
conformability is the set ~¢ of SDP, {~., ft., ct+l,  ft,+l}. The stencil is represented by the 
diagram below: 

r P ~ n + l h  E F I . Jn4" lh  
] 

A'E=k I 
n Cl 
I 
L 

A ~ h  B #~h 

[ -  . . . . . . . . . . . . . . . . .  . I  

Ax,ch 

w 

C 

To compute the coefficients ~ of the difference operator (2.2), we expand L[u(x, t)] about 
the central point (x, t) as a Taylor's series in powers of h and k to obtain 

ct3 

LEu(x,t)] = E E(-ct.)P(-½) qA + ( -½)qB 
p,q=O 

+ ( ~ . ) , ( - 1 ) ~ c  + ( -  , ~_~ ct.+l) (z) n + (½)qE 

hPk q 63p+q u 
+ (fl,+xF(½)qF]'p!q!_ t?xPOt q . (2.4) 
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We select (p, q) pairs to include the explicit terms of the heat operator and force the u and ux 
terms in (2.4) to vanish. The four conditions thus imposed for the (p, q) pairs (0, 0), (1, 0), 
(2, 0) and (0, 1) will restrict the choices of the coefficient set cg to a two-GP, four-SDP family. 
To uniquely define cg, we adjoin two additional (p, q) pairs, (1, 1) and (2, 1), which contain 
the two desired generation parameters, ~ and ~/. This yields the system of linear symbolic 
equations: 

Qx = f (2.5) 

where 

Q = 

- 1 1 1 1 1 1 - 

- ~ .  0 /~. -~.+~ 0 /~.+1 
~2 0 f12 ~2+1 0 fl2+1 

_ 1  _ 1  1 ± 1 1 
2 2 2 2 2 2 

½~. 0 ' ~ , -~//. 0 --20~n+ 1 -ifln+ 1 

1 2 1 2 1 2 1 2 _ - ~ p .  0 -Tot, 0 2fin + 1 2(Xn + I 

x = (A B C D  E F) T, f = ( 0 0 -  2h -2 k -1 ~t/) T. 

Thus, from (2.1), (2.2), and (2.5) 

L[u(x,  t)] = u, - ux~ , + #hku,x + qh2ku,xx + O(h 3) + O(k 2) (2.6) 

We are, of course, ultimately concerned with solving the difference equations generated by 
L[u(x,  t)] by computer. We could store system (2.5) and numerically determine the values of 
the set of coefficients cg for a given (~, ~/) pair and each new value assignment to the SDP set 
~ .  This would involve the numerical solution of a 6 x 6 system of equations twice/sweep in 
the one-dimensional case; in the higher dimensional cases, the number of solutions required 
per sweep would increase greatly. We could design much more efficient software if we could 
solve for the coefficients explicitly. Moreover, an explicit solution would allow us to 
analytically investigate the effect of our GP on the stability, local accuracy, etc. of our 
difference methods. The task of solving the system of equations (2.5) by hand would be too 
tedious and error-prone. Thus we have a good candidate for solution by an algebraic symbol 
manipulating system. The problem was solved symbolically by the MACSYMA [7] system, 
yielding the following solution: -I A 

B 

C 

D 

E 

F 

- - [ q  - ft.# + h - 2 ] / [ ~ . f l .  + ct#] 

[q + #(ct - ft.) - k - ' % f l .  + h - 2 ] / % f l .  

- [~ l  + %~ + h - 2 ] / [ ~ . f l .  + f12] 

[~ - -  P . + , ~  - h - ~ ] / [ % + , / ~ . + ,  + ~ . L , ]  

- [ ~ I  + ~ (~ , ,+  , - f t . + , )  - k -  ' ~ . +  , f l . +  , - h-2]/~.+,fl.+l 
_[rl + %+ ,~  - h -2 ] / [%+ , f l .+x  + f l .2+1] 

(2.7) 
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At present, the inversion of symbolic matrices of even this order of magnitude can be 
troublesome. The manipulation can be simplified by taking advantage of the fact that the 
matrix can be partitioned in the form 

F 

where V 1 and V 2 are Vandermonde matrices of order 3, and whose inverses are easily 
computed [5]. Then 

I I v - 1  V-1 1 
0 - 1 =  !'..!. .................. 77...:.! ...... . 

l_g-1 V-1 
2"2 "2 

2.2. Matrix jormulation 
Let u~ = u(xi, t,), where 0 < i < N + 1, n > 0. We approximate u~ by solutions U~ of the 
linear system 

M. + 1 Un + 1 = M. U" + Z" (2.8) 

where US= (U], U~2 . . . . .  gsN)  T and s = n, n + 1; M.+ 1 and M. are square tridiagonal 
matrices of order N whose elements are functions of the SDP and GP, and are given by 

E f 0 
D E F 

D E F 

_ 0  D E 

M n  ~--- - -  

B c 0 
A B C 

A B C 

_ 0  A B 

(2.9) 

Z" is a vector of N components involving the boundary conditions. 
We can express (2.9) more conveniently as the weighted sum of simpler matrices I, W,, 

W.+ l, Y., and Y~+i" 

1 -2 1 y M.+l  = k - i I + 5 (  h - -T] )Wn+I - -2  ~ n+l'  

M n  __ k - i i  _ ½(h-2 + t l ) W  n 1 - ~ r o .  

(2.10) 

Let s = n, n + 1, and 1 < i, j < N. Then the elements in the i th row and jth column of W~ and 
Y~ are: 

w~ = 

2/%//, if i = j  

- 2 / [ ~ ( %  + fl,)] if i - j = 1 

- 2 / E P , ( %  + & ) ]  if  j - i = 1 

0 otherwise 

(2.11) 
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[ [2(~ - fl,)]/otfl, 
2g/E=,( s + b'.)] 

Y* = -2=,/[fl,(~ + fl,)] 
0 

if i = j  

if i - j =  1 

i f j - i = l  
otherwise 

(2.12) 

I denotes the N x N unit matrix. 
As usual, in the interior of the region R, we will work with a uniform net. Moreover, for N 

> 2, it is reasonable to assign the value one to ft. and/7.+ 1 in row 1 (at the left-hand 
boundary) and to a. and a.+l in row N (the right-hand boundary). Then (2.11) and (2.12) 
have the forms 

i v ,  = 

m 

21o~ s -2/(1 + as) 0 -  
- 1  2 - 1  

0 -2 / (1  + / 7 )  2//7~ 

(2.13) 

= 

- 2(0q - 1 ) /~q  - 2 ~ J ( 1  + ~)  0 - 
1 

_ 0 2fls/(fls + 1) 2(1 - fls)/fl.~ _ 

(2.14) 

For future use, we shall need some information about the eigenvalues of ~ and Y~. First, 
we note that 1~ = H~- x W~Hs is symmetric, where 

[ , , / 2 / ( 1 + ~ )  if i = j = l  

H s =  i x / 2 / ( l + f l s )  i f i = j = N  (2.15) 

[du otherwise 

s = n, n + 1 and d u denotes the Kronecker delta of rank 2. 
Hence, the eigenvalues of I~, and therefore those of W~, are real. 
The matrix W~ is irreducible, with diagonal dominance assured for rows 2 through N - 1. 

Strict inequality occurs for rows 1 and N when 

> and > . (2,16) 

respectively. By (2.3), these conditions are always met. Thus, the eigenvalues ps of W~ are 
always positive. Using Gerschgorin's Theorem [13] to derive an upper bound, we find 

0 < #s < #* (2.17) 
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where 

[ 2 ( 2 G + 1 )  2 ( 2 f l s + 1 ) ] 4 ,  /t* max 
~(~ + 1) ' /~ (L  + li 

6 (2.18) 

The matrix Y~ is skew-symmetric, with eigenvalues occurring as imaginary pairs and zero. 

2.3. Stability 
We will examine the stability of the difference operator using the matrix method for 
analyzing stability which automatically includes the effects of the boundaries. If M,+ ~ is 
nonsingular, (2.8) implies 

U,+I = M]+I1M, U" + M]+ax z". (2.19) 

A necessary and sufficient condition for stability is that the spectral radius p of the 
amplification matrix M~+~M, be less than or equal to unity [1,4, 9, 11]. The vector 
M~+xlZ,, does not effect stability. 

Because of the asymmetry of the matrix Ys, it is quite difficult to obtain a good estimate for 
p (M~+~M,). We can, however, obtain a reasonable estimate by setting ~ = 0. This has the 
effect of setting A = C and D = F in the interior of R. Let us further simplify the analysis by 
letting a = min[ G, fl~], and let W, Y, H, and/t* denote W~, Y~, H~, and/~*, respectively, with G 
and fl~ replaced by a. 

Then 

M]+~M, = [k-~I + ½(h -2 - / / ) W ] -  l [k-  ~I - ½(h -2 + q)W]. (2.20) 

By straightforward substitution we find 

1 - 2  k-  1 2(h + r/)kt 
A = k_ 1 +2  - r/)/l X(h - 2 (2.21) 

where A e J[ ,  the set of eigenvalues of M~+IIM, and/t  e ~¢r, the set of eigenvalues of W. 
Moreover, using (2.16) we see that 

(M~-+~ M,) = H - l ( M n - 1 1 M . ) H  

= H - i [ k - l I  + ½(h -2 - r / )W] - l [k - l I  - y(hl -2 + t/)W]H 

= {H-~[k- l I  + ½(h -2 - rl)W]-~H}{H-~[k-II - 2(hl -2 + t/)W-JH} 

= { H - i [ k - I I  + ½(h -2 - ~I)W]H}-~{H-I[k-~I - 1(h-2 + q)W]H} 

[k-aI+½(h -2- t l ) lTV]-x[k-xI  ±(h -2 = - 2 + q)W]. (2.22) 

Since matrices [k - l l  + ½(h -2 - ~/)ff-]-~ and [k-1I - ½(h -2 + q)ff]  are symmetric and 
commute, ( ~ )  is symmetric. Thus (M~)~M,) is similar to a symmetric matrix so that 

p(M;+a~M,) =- p(M;+~iM,) _< 1 (2.23) 

is a necessary and sufficient condition for stability. We insist then that ]A] < 1 for all A ~ ~/,  
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which leads to the following conditions: 

(i) A < 1 if -h-2//.2 ~ 0, 

(ii) A > - I  i f t / p<2k-1 .  

J. H. Giese, H. M. Khalil and D. L. Ulery 

( 2 . 2 4 )  

(2.25) 

Condition (i) is trivially satisfied since h and p are always positive. From (2.17) we find that a 
necessary and sufficient condition for the unconditional stability of the family defined by 
(2.2), (2.7), and ~ = 0, is that t/and k satisfy the following condition: 

2 
r / < -  (2.26) 

- k/~* ' 

where 

2(2a + 1) 

4 

for 0 < a < x / ~  

for ~ / ~ _  a _  1 

In the limit, this condition takes the form 

lim ;1 < 0,  ( 2 . 2 7 )  
o''~ 0 

which assures unconditional stability independent of the values of the SDP. 

TABLE 1 

Familiar two-level difference operators 

Scheme ~ t/ A B C D E F Stability 
conditions 

Classical 0 h -2 - h  -2 2 h -  2 - k -1 - h -2  0 k -1 0 k h -  2 < ½ 

explicit 

Classical 0 - h  -2  0 - k  -1 0 - h  -2  2 h - 2 + k  -1 - h  -2 none 

implicit 

Crank- 0 0 -½h -2 - k  - I  + h  -2 -½h -2 - l h - 2  k -1 --}-h -2 -21-h -2 none 

Nicolson 

One- 0 h - 2 ( 1 - 2 0 )  ( 0 - 1 ) h  -2 - k  -1 ( 0 - 1 ) h  -2 - O h  -2  k - l + 2 0 h  -2  - O h  -2  k h - 2 ( 1 - 2 0 )  

parameter + 2(1 - O)h- 2 < ½ 

none, if 
Asym- h -2 0 0 - k  - l + h  -2 - h - :  - h  -2 k - l + h  -2 0 used on 

metric - h  -2 0 - h  -2 - k - l + h  -2  0 0 k - l + h  -2 - h  -2 alternate 

time steps 
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If we restrict the region to the usual rectangular shape, we can set all the SDP to unity to 
achieve a uniform net throughout R. The necessary and sufficient condition for stability for 
arbitrary v/and k with ~ = O, then, is given by 

q _< ½k-1 (2.28) 

Since M~+~IM, is a continuous rational function of the GP, we can expect that its 
eigenvalues will also be continuous functions of the GP. This being the case, we can 
generalize our results to the extent of predicting that methods satisfying the stability 
criterion (2.26) will also be unconditionally stable for sufficiently small values of [~[. By Lax's 
equivalence theorem [6], immediately applicable for the single equation (2.1), stability of 
our difference methods is equivalent to the convergence of U 7 to u(x, t) in R. 

2.4. Generation of standard two-level difference operators 
The familiar two-level approximations [11, 12] displayed in Table 1, can be obtained from 
our method by specializing the generation parameters ~ and v/after setting all SDP to unity. 
The local accuracy and stability criteria of schemes in which ~ -- 0 is immediately apparent 
from (2.6) and (2.28). 

3. Equations of higher dimensions 

In this section we consider a technique for using the conformable stencil developed for the 
one-dimensional heat equation to build lattices for higher order heat equations subject to 
Dirichlet boundary conditions in an arbitrary region. Since most of the additional 
complications arise immediately with the addition of one more space dimension, we content 
ourselves with considering only the two-dimensional case in detail. The further extension to 
three or more space dimensions appears to be straightforward. 

3.1. Extension of method to higher dimensions 
A natural extension of the approach developed for the one-dimensional case can be thought 
of in geometric terms as the intersection of two conformable stencils. The stencil for the one- 
dimensional heat equation consisted of six points in the x, t-plane; in two dimensions it is 
natural to combine a six-point stencil in a plane normal to the y-axis with another six-point 
stencil in a plane normal to the x-axis, insisting that the centered points coincide. This 
results in a ten-point stencil, illustrated below: 

I 

Y 

~t 
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The difference operator associated with this stencil can be formed as the algebraic sum of 
two judiciously modified one-dimensional operators. Let Lx[U ] and Lr[u-] be the operators 
associated with the stencils in the planes normal to the x- and y-axes, respectively. Instead of 
approximating the standard heat equation, we approximate ½u, - u~  by L~[u] and ½u t - uy r 
by Lr[-u ]. We can easily specify these operators by making a slight change in the right-hand 
vector of the system of equations defining the stencil coefficients (2.5). The component k-  1 
in the vector f is replaced by ½k- 1. The effect of this replacement is a simple change of 
variable in the solution vector given by (2.7). The difference operator associated with the 
ten-point stencil, Llo[U ], can then be written as 

Llo[-U-] = Lxl-u-] + Ly[u] 

= u, - ux: , - ury + ~xhkut~ + ~l~h2kut~x 

+ ~rhkutr + rlyh2kutry q- O(h 3) + O(k 2) 

= ~, Aa, bU(X + ah, y +_ bh, t + ½k) 

where 

X a = 0, ~ ,  ct,+l, 

(3.1) 

Thus, Llo[U ] defines a two-level, ten-point, four-GP, eight-SDP family of difference 
approximations to the two-dimensional heat equation whose coefficients, Aa.b, are explicitly 
known. 

Extending this approach further, we combine two pairs of mutually perpendicular 
conformable stencils - -  one pair oriented coincident with the coordinate axes, the second 
pair rotated 45 ° about the t-axis - -  to produce an eighteen-point stencil: 

I 

! I 

/ f 
[ f . . 

Let L~[u] and L~[u] be the operators associated with the rotated stencil-pair. Since each 
pair of stencils approximates the two-dimensional heat-equation, we define our eighteen- 
point operator as 

(3.2) 

The operator Lla[U ] defines a two-level, eighteen-point, eight-GP, sixteen-SDP family of 
difference approximations. 
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In general, the intersection of n conformable stencils in the (x, y, t) space leads to a variety 
of two-level, (4n + 2)-point, 2n-GP, 4n-SDP family of finite difference approximations to 
the two-dimensional heat operator. The coefficients of the difference operators can be 
obtained in explicit form, after some manipulation, from (2.7). 

3.2. Analysis of a ten-point multiparameter family for u t = u~x + Uyy 
Let R --- J x I be an arbitrary region of the (x, y, t) space with smooth boundary R, where J 
is a smoothly bounded region in the xy plane and I is the interval 0 < t < T < oc. We 
consider the two-dimensional heat equation 

u~ = u~ + urr (3.3) 

subject to initial conditions 

u(x, y, O) = f(x,  y), (x, y) e J 

and the boundary conditions 

u(x, y, t) = 9(x, y, t), (x, y, t) e t3R. 

3.2.1. Matrix jormulation 
Let ui",j = u(x i, y~, t.), where i,j, n >_ O. We approximate ui"j by solutions U~"j of the linear 

system 

M, + 1 U" + 1 = M, U" + Z". (3.4) 

U" and U" + 1 are N-dimension vectors; Z" is an N-dimension vector involving boundary 
conditions; and M,+ 1 and M. are square block tridiagonal matrices of order N, whose 

elements are the coefficients of the difference operator (3.1). 

We anticipate from Section 2.2 that the matrices M,+ 1 and M, can be expressed as the 
weighted sum of simpler matrices, 1N, W, 17¢ + x, ~',, and Y. + 1, each block tridiagonal and of 
order N. Let Ws(1, J; i,j) and 7Y(I, J; i,j) denote the i th row and j  th column of the (I, J) block 

of 1~ and Y~, respectively, where s = n, n + 1. Then the entries of I7¢ s and Ys are shown in the 
table on p. 108. 

Separating components contributed by the operators L~[u] and Lr[u ], we can express 
I7¢, and ~'s as 

~ = w~ + ~ r , 

~s=rsX+y:. 
(3.5) 

We can now express M n + 1 and M n as 

x 1 - 2  x M,+t =k-XlN+½(h-Z_rl~)W~,+l _ !;:2,~ Y~.+I +2(  h -~ly)W~,+,- ½~y YnY+ 1, 

~ ±(h-2+~lv)WY_½~yy~. M. = k - ~ I ~  - ½ ( h  - ~ + qx)W~ - ~ Y ~  - 

(3.6) 
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2 2 2(a x -/iX) 2(a~ - fir) 
I = J i = j  ~fl~ + a y/i~ aX/i ~ + a,rfly 

2 2fl~ 
i - j = l  - ~(~ + ~ )  ~(~ + ~) 

2 2ar~ 

j - i = 1 /iYs(a~ + flY) /i~(ct~ + flY) 
else 0 0 

I - J = l  

J - I = l  

2 2fl~ 
i = j  

x x x x 2¢ 

else 0 0 

2 2~ x 
i = j flx(c~X + fiX) flX(~X + fix) 
else 0 0 

3.2.2. Stability analysis 

For purposes of analysis, we shall assume that the step size is chosen in such a way that each 
block in M,  + 1 and M, is of equal size, i.e., dR has the form illustrated below: 

.1 ) *~ 
\ I' 

) 

This assumption is not especially restrictive, since 1) unconditional stability implies total 
flexibility in selecting step size and 2) the boundedness of the derivatives of the solution 
requires a definite degree of smoothness of the boundaries. 
Furthermore, let a = min[~, fl], and let W x, W r, Yx, and Yr denote ~x, W~, Ys ~, and Y~Y, 
respectively, with a~, a~, fiX, fl~ replaced by a. 

We define two x//-N--order matrices W and I z of the form 

- 2 - 1  0 -  

_ 0  - 1  2 
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- 0  - 1  0 - 

1 0 - 1  
y ~ _ - - -  

6 --1 

_ 0  1 0_ 

109 

(3.7) 

Then 

W x = W ® I ,  VC~,=I®W, Y x = Y ® I ,  Yy=I®Y,  (3.8) 

where I denotes the unit matrix of order x / ~  and the symbol ® signifies the Kronecker 
product. 

A necessary and sufficient condition for stability is that 

p(M.+~,M,) < 1. (3.9) 

As in the one-dimensional case, it is necessary to set ~x = ( r - - 0  in order to obtain a 
reasonable estimate for p. Then 

1 - 2  
M,+ 1 = k-llN + ½ ( h  - 2  - ?lx)Wx -}- ~(h - qy )Wy,  (3.10) 

- 1 - 2  1 - 2  M, k 1I  N - ~(h + tl~)W ~ - + = 2(h t/y)W r 

Since 

W Wy = (W®I)( I® W)= W® W= WyW~ (3.11) 

the matrices possess a common set of orthonormal eigenvectors v with the corresponding 
eigenvalues given by 

Wxv =/~v, W~ v = ,~v. 

It is clear from (3.11) that 

M,+ xM , = M,M,+ 1, (3.12) 

which implies that 

M.M; 1, = Mi+~aM.. (3.13) 

Hence, using Frobenius' lemma [10], we can express the eigenvalues A of M~+llM, in the 
form 

1 - 2  
k - 1  -~(h + r/x)~ - -  l ( h -  2 + r/y),~ (3 .14)  

A = k_ 1 + ½(h_ 2 _ t/x)/1 + 1(h-2 - t/,)2 " 

Both M~-+xl and M,  are symmetric, since Wis symmetric. From (3.13), we see that M]+a~M, 
is also symmetric, so that the condition 
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[A[ < 1 for all A,/~, and 2 (3.15) 

is a necessary and sufficient condition for the stability of (3.4). This leads to the following 
conditions: 

(i) A < 1 if - h - 2 ( p  + 2) < 0 (3.16) 

(ii) A > - I  i f p t / ~ + 2 q y < 2 k  -1 (3.17) 

Using Gerschgorin's Theorem, we find 

0 < #, 2 < 4/tr2. (3.18) 

Since h, p, and 2 are always positive, condition (i) is trivially satisfied. Stability conditions for 
(ii) are 

rl x + fly < . 5 a 2 k -  1 for r/~, r/y > 0, 

r/x < .5o.2k-1 for r/~ > 0 ^ ~/y < 0, (3.19) 

< .5o.2k-t for ~/~ _< 0 ^ qy > 0, 

uncondit ional  stability for qx, ~/y -< 0. 

In the limit as a ~ 0, uncondit ional  stability is assured only when 

r/x, qy < 0. (3.20) 

Again, by the argument of continuity, we can expect condition (3.19) to be necessary and 
sufficient for the unconditional stability of methods specified by sufficiently small values of 

[~l and I~yl- 

3.2.3. Special  cases 

3.2.3.1. Generat ion o f  s tandard two-level  di f ference operators  

The familiar two-level approximations, displayed in Table 2, are special cases of the subclass 
of the family (3.6) with tr = 1. The local accuracy and stability criteria of each scheme is 
immediately apparent from (3.1) and (3.19). 

3.2.3.2. Spli t - formula schemes 

We now consider a variant of (3.10) to derive a multiparameter family of ADI methods. Let 

1 - 2  M , +  a = [ k -  ~ Iu  + ~(h - q~)W~][k-  ' I N + ½(h -2 - r/y)Wy] 

M ,  = [ k - ' I  N - 2X(h -2 + r lx)W~][k-~IN - ½(h -2 + r/y)Wy]. 
(3.21) 

The split formulas 

[k - l I N + ½(h- 2 _ _  l~x)Wx" ] U n + 1 .  = [-k- 11 N - -  ½(h- 2 + r/y) IVy] U" 

[k-  xI N + ½(h -2 - ~/y) IVy] U "+1 = [k-  1I N - ½(h -2 + r/~)Wx] U "+ 1, 

are obtained from (3.21). 

(3.22) 
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TABLE 1 
Familiar cases 

111 

Scheme {x {r qx ~/r M,  + 1 M. Stability 

Explicit 0 0 h -2 h -2 k ~I~, k-l lN-h-2(Wx+Wy) kh-2<_¼ 

Crank-  
Nicholson 0 0 0 0 k-XlN+½h-2(Wx+ Wy) k llN--½h-2(Wx+ Wr) none 

Since the matrices W~ and Wy are symmetric and commute, (3.11), it can be shown that 
each of the factors comprising M,-+11 and M, are symmetric and possess a common set of 
orthogonal eigenvectors. Hence, we can express the eigenvalues A of M~-+~ M,, from (3.21), 
in the form 

- 5(h + rh,)/2][k-' - ½(h -2 + r/y)2] (3.22) A = [k-1 1 -2 

[ k-~ + ½(h -2 - t lx) /2][k  - 1  --I- ½(h - 2  - t/r)/].] 

where/2 and 2 are the eigenvalues of Wx and Wr, respectively. From (3.18), 0 </2, 2 < 4 / 0  "2. A 
necessary and sufficient condition for the stability of this family of ADI methods is that 

[AI _< 1 for all A,/2, 2. (3.23) 

This leads to the following conditions: 

2(v + 
(i) A _< 1 if qx + r/y < / 2 2 ~ '  (3.24) 

(ii) A > - 1  if/2~/x + 2~/r - ½k/v/~/r < 2k-1 + ½/22kh-4. (3.25) 

Note that if we choose r/x < 0 and ~/r < 0, the method will be unconditionally stable, 
independent of boundary irregularities. 

Special cases: 
Peaceman-Rachford Method: a = 1, ~/x = ~/r = 0, 

_ _  1 Mitchell-Fairweather Method: a = 1, r/x = ~/r 6. 
From (3.24) and (3.25) it is clear that both these methods are unconditionally stable. 

3.3. An eighteen-point muhiparameter family for u t = uxx + ury 
Extending the techniques demonstrated for the ten-point operator to the eighteen-point 
operator (3.2), we define 

ITv= 3 Wx + Wr + W~ + Wr*, ~'= Yx + Yr + ~xO + Y~ 

where 

Wx=W®I ,  W , = I ® W ,  W~=E®W,  W~=E*®W, 

L=r®I, Y,=ioY, Yy=E®Y, V=E*®Y. 

(3.26) 
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The matrices W, Y, and I are defined by (3.7). E is the forward shift operator defined by the 

x /~-order  matrix 

l L0 
E* is the backward shift operator defined by the x/N-order matrix 

I00  0 E * =  1 

0 

The difference scheme is then defined by the matrices 

3 - 2  Mn+l k - l i N + ~ ( h  rlx)Wx ½~ y~ 1 -2 = - - + ~ ( h  - ~ , ) W ,  

_ ½~,y, + ½(h-2 _ ~/x~)Wx ~ _ _l,~4,v* 1 -2 
2"~y y 

M ,  = k - l l N  _ 3(h-2 + ~lx)Wx _ 7~xy _ g(hl -2 + ~l,)W, 

_ ½~yyy _1~(h-2 At-"lx~4)) Vl/e~x - ±/:,yrk2.,x x - ½( h-2 + r/~)W~ - 120Y4,2~y y"  

3.4. Introduction of  extra parameters 
The following technique can be used to increase the number of GP associated with 
operators for the two-dimensional heat equation. Let a two-level, ten-point conformable 
stencil~C[u(x, y, t)] be the fundamental operator, where 

£~°[u] = L~[u] + Ly[u] + O~ux + Oyuy + O~,u~y, (3.28) 

where L~[u] and Ly[u] are the operators introduced in Section 3.1 and 0~, 0y, and 0x, are 
additional GP. If we choose to approximate the heat equation with a ten-point operator of 
O(h3), as in (3.1), we require that 

OxU x = OyUy ~-" OxyUxy = 0 

and no new GP have been added. However, if we choose to combine at least two of these 
new fundamental operators to construct an eighteen-point operator, we have 

~ , 8 [ u ]  = ½ { ~ [ u ]  + ~ e * [ u ] }  

= ½{Lx[u ] + L,[u] + L~Eu] + L~Eu] + (0~ + O~)u x 

+ (0, + O~)uy + (0~, + ~,)u~,}, (3.29) 

in which six additional GP have been introduced. Imposing the three constraints necessary 
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to assure that our operator is O(h a) leaves us with an operator with three more GP than we 
had for L18[u ]. This new operator thus has a total of eleven GP, and is equivalent to the 
eleven-parameter operator discussed by Giese and Khalil [8]. 

In general, combining n fundamental operators~[u] results in a two-level, (8n + 2)- 
point, 8n-SDP, (7n - 3)-GP family of difference operators. Moreover, it is obvious that 
judicious selection of fundamental operators can lead to multiparameter families with 
varying characteristics, such as three-level families. 

4. Conclusions 

The use of a conformable stencil to algorithmically generate families of difference approxi- 
mations to the first boundary value problem for the heat equation has led to some useful 
results: 
1. a procedure for constructing multiparameter families of difference schemes which 

contain boundary information for regions of arbitrary shape; 
2. a simple method for determining the conditions for stability of each family symbolically, 

in terms of generative parameters and spatial displacement parameters; 
3. a unified account of existing two-level difference approximations to the one- and two- 

dimensional heat operator. 
We have demonstrated these techniques in detail for: 
1. a two-level, six-point, two-GP, four-SDP family of approximations to the one- 

dimensional heat operator with Dirichlet boundary conditions in an arbitrary region; 
2. a two-level, ten-point, four-GP, eight-SDP family of approximations to the two- 

dimensional heat operator with Dirichlet boundaries in an arbitrary region; 
3. a two-level, ten-point, four-GP, eight-SDP family of ADI methods for the two- 

dimensional heat operator with Dirichlet boundaries in an arbitrary region. 
Necessary and sufficient conditions for the stability of each of these families was determined 
symbolically in terms of their parameters; it was shown that proper choices of the generative 
parameters assured stability independent of boundary conditions. The well-known cor- 
responding difference schemes were shown to be a subclass of these multiparameter families. 

Two factors make the technique demonstrated here particularly suitable to software 
design. First, the coefficients are given as explicit symbolic expressions. Secondly, the basic 
stencil is used as a building block to construct finite-difference families in terms of simply 
expressed matrices. Thus we have developed a fairly simple algorithm to serve as the core for 
software to solve partial differential equations. 

Finally, the ease with which stability analysis can be performed should encourage 
exploration of these families to discover optimal schemes. 
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